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1. INTRODUCTION

In this report, we examine the regression problem

considered by Li and Hwang (1984). A number of important

Navy problems may be cast In the form of regression

problems. Villalobos and Wahba (1987), for instance, note

that this is the case with the task of es*imating posterior

probabilities in classification problems. Whereas Li and

Hwang (1984) consider the errors in their regression problem

to be normally distributed, however, we will allow for a

more general class of error distributions to accommodate

. problems in which this normality assumption is not

satisfied.

Suppose that observations yI y,• ., y are made at

levels x, x, , x, with

yj s(x,) + £ 11 )

where the function s is unknown and the c are Independent

random errors having mean zero. Using vector notation, we

may write (1.1) as

(11'

t
'.-* where y= (y, . .,y ) , p = (Ju . .(, ) =(s(x),. .

* s(x ), and c= . . Note that the observed
n n

vector y is a simple estimate of the unknown vector *.
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LI and Hwang (1984) consider estimates p of p of the

torm

S= (l-c)y + cM y (1.2)

= y - c(I-M )y

where c=c(y) is a real-valued function of y, M is a
n

specified nxn matrix, and I is the nxn identity matrix.

Such an estimate may be viewed as a cnmpromise between the

* estimate y of p and the estimate Mny of p. If c=O, then

P=y. If c-1, then u=M y. For each value of c the estimate

pi lies upon the line passing through the points y and M y

(see Fig. 1.1). If 0 _<_ c < 1, then p lies on the line

segment between y and M y. The matrix M in the estimate

M y will usually result as a consequence of adopting some

nonparametric proach to the estimation of p. See section

3 of Li and Hwang (1984) for examples of the choice of M

(Errata for Li and Hwang (1984) are given in Appendix A.)

,I.:

"°~

.A.

Figure 1.1. Geometry of the Li and Hwang (1984) estimate.
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Relying on a result of Stein (1981), LI and Hwang

(1984) exhibited good choices of c when the errors have

identical normal distributions. Specifically, choices of c

are qiven so that the estimate p dominates y as an estimate

of M with respect to squared error loss. (See Appendix B

for a short review of standard decision theory terms.)

The main purpose of this document is to present good

estimates of the form given in (1.2) which allow the errors

to have distributions which are not necessarily normal.

03

. .7

'7.

S:?:

'.

7**7, *J

".7.

S
, 77 o

SoO

- --""-"-"°"'°--'--" ..-.-. ,'.-.--.° ".-." .""*,. * ".•",-..":"-.--..--. "'-"° " -:","". .. "-° °"" ,.'-". "° f -. "" " ""-j " ,,J2- " ."". - 7 ."" 7"---,
°

-. "." *. .



2. PEARSON RANDOM VARIABLES

As mentioned in the introduction, Li and Hwang

(1984) relied on a result of Stein (1981) to establish

choices of c in (1.2) so that ju dominates y as an estimator

of p when the errors are independent, identically

distributed normals. Stein (1981) established his result

'N: with the aid of an identity which is satisfied for normal

random variables. Specifically, if X is a normal random

variable with mean 0 and variance 0, , then for any suitable

function h
E (X- )h(X) = 2 E h'(X) (2.1)

where E denotes the expectation operator. Since an identity

of this sort holds for random variables having distributions

in the Pearson (1895) class (see Hudson (1978), Johnson

(1984), or Haff and Johnson (1986a)), which includes the

normal, we suppose that the errors in our regression problem

have Pearson distributions.

Specifically, we assume that the errors are

independent, with e having probability density function

f (w), where

9 -w

f'(w) =f (w).
0+ jI w 0 2 w

We say that c has a Pearson density with parameters 9,J J

( 3 , (3 , respectively. For future relerence, let

-J. 5
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(3 + IW + [3

[ji jZ

a (w) = (2.2)
-- 1 - 2

and 1

b (w) = I dt. (2.3)
J a (t)

Note that the b are only specified to within some arbitrary

a constant of integration. Estimates of pu, yet to be

presented, will involve the functions a and b
.1 1

Examples of random variables having Pearson densities

are listed in Table 2.1. For these densities, the Pearson

parameterization and the functions a(-) and b(') are listed

*- in Table 2.2.

We now state an extension of (2.1) to the Pearson

family.

Theorem 2.1: Let X be a Pearson random variable with

density f on the interval (r,s) and a(-) defined by (2.2).

If h(-) is a differentiable function such that

lim a(x)h(x)f(x) = lim a(x)h(x)f(x) = 0, (2.4)
x. r X -. S

then

E (X-uvh(X) E a(X)h'(X) (2.5)

" where v=(O+3 )/(1-2(3 ) provided these expectations exist.

Proof: See Hudson (1978), Johnson (1984), or Haff and

Johnson (1986a) for a proof using integration b,- parts. m

6.



Table 2.1. Examples of Pearson densities.

Name Density
Notation Mean Variance

Normal 1 x (-x0z2a, 20<X<0

N (OilCy2 ) (2nct ) 172ep -- O/21, -'x

E X Va r X cy

Beta (+F(3) gai(1-x)0 1  0 <x <1 (C(,(3 0)

B (a, r(a r i

E X Var X

Gamma Pct x 1 exp(-fx) x > 0 a, > 0)

F a, (3) F (00

E X~a Var X oa/f~

Reciprocal pX exp(-O3/x)x>0 (a >)

xFaP >a4(,-1
I (tx F(+aI

2

* (ai) (-i)(at-2)

T F((a1)/2)r 1 +1(-x x <

2

t eX 8,) aaa >1 VarX( a/ 2
(a-2>)0

0z

(contd)
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Table 2.1. Continued.

Name Density
Notation Mean Variance

F F((+03)/2 c*/
x' 2  ((3+cax)~ x > 0

(3 2(32 (at+(3-2)
E X JI, (3 >2 Var X = z, (3 >4

Power 0 k- x ,9 0 < x < k (0 > 0)

ke k 2

E X Var X
(0+1) (e+2 ) (0+1

Pareto eke -(+ x > k > 0 (0 > 0)

ke kZO9
E X= ,0>1 Var X e > 2

Pearson [Q'(e) FQ,(x) 1 (1/202)
Type oc exp - arctan -JJQx

CID < X < 00

2

and kz4 f3 ( 3 2-(3 > 0

e+(3Q(

m E X =,(3 2<1/2 Var X ( , (< 1/3
1-23 1 -30

8
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Table 2.2. Some Pearson parameterizations.

Density (e 3001 a(w) b(w)

Nea2 (ea2 0,)a2 
a2

B C4 0 .0

(ai+(-2) (c(+(3-2) (ci+t3-2)

w( 1-w)

(c(ct+(3 in r)
0~,() (a -1)(3, 0, 1/13, 0 w/t3 (3 n w

I F (i,(3) ((3/ (c+) ,0, 0,1/ (ot+1 w 2 /(ot-1) o1)/

2 2cxa + e -2e 1

(CK+1) (C(+1) (Ct+1)

acy 2 + (w-e) (ti (w-e)

(cti) 2) 1./2 I 2 1,/2(CO Jl
*(3(ct-2) 2(3 2

-~ ~ F(x, (3)( 0
ax((3+2) o((3+2) (t3+2)

2w cx((3-2)
*(w+f3/ct) - in (i+2/(ctw))

((3-2) 4

Power (0,0,0, )not useful
* (0-1)(e+1)

(contd)
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Table 2.2. Continued.

Density (e,%10't 2 a(w) b(w)

~1~ 1

Pareto (0,0,0, )not useful

-. Pearson 2~ )2 ~>
Type ''0o0'10"0) wt 10O2-0 >

IV

___________ ______ [____3w+(32 w2  2(1-2( rca Q'(w)
-. 2

(1-2f3) k 1 k

Note that Theorem 2.1 reduces correctly in the event X

Uis a normal random variable. For, from Table 2.2, V=

(e+(3 )/(1-2(3 )=e and a(x)=x. Substituting Into (2.5) we

obtain (2.1) provided h satisfies the conditions of Theorem

2.1.

An understanding of -v and a(-) in Theorem 2.1 Is given

by the following result:

Corollary 2.1: If Theorem 2.1 is satisfied with h(x)=l and

h(x)=x, then

*E X = (e+[3 )/(1-2(3) and

Var X =E a(X) (W +(3 V+(3 V2 )/(1-3t3 )
0 1 2

Hence, In this case, -v Is the mean of X and a(X) Is an

01

01
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Proof: Set h(X)zl and (X-J), respectively. U

Higher order moments of Pearson variables may be found with

the aid of a recurrence formula derived from (2.5) by

setting h(x)=(x-v) n  The first four moments, for example,

may be used to determine bounds on tail probabilities. See

Appendix C for details.
p- -

Throughout this report, we use the fact that if c is a

Pearson random variable having mean zero, then yp+C

is a Pearson random variable having mean p This Is a

* consequence of the following result:

Theorem 2.2: If U is a Pearson random variable with

parameters m,r,s,t, then V=eU+f is a Pearson random

variable with parameters em+f, e r-efs+f t, es-2ft, t.

Furthermore

a V(v) = e aU (u) and

b.- (v) = bu(u)/e.

Proof: See Kaskey, Krishnaiah, Kolman, and Steinberg (1980)

tor the proof that V is a Pearson random variable with the

given parameters. The expressions for a V(v) and bV(v)

follow by direct calculation from (2.2) and (2.3). a

'.,i

0 o
p.o -i
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3. Bayes Estimates

Our problem is to choose c so that p=y-c(I-M )y (recall

(1.2)) is a good estimate of p when y is a vector of

independent Pearson random variables having mean p. In this

sect* n we approach this problem from a Bayesian

4 perspective. In particular, we suppose that p has a prior

distribution n(p). As the optimal c is best understood in

terms of the Bayes estimate, call it 6 B, of p, we begin by

stating 
B

Theorem 3.1: Suppose that Y is a nxl vector of independent

Pearson random variables for which a (yd,. .,ar(y ,

given by (2.2), are completely specified. Then the Bayes

estimate of u with respect to squared error loss, provided

it exists, is given componentwise by

B d ln f(y)
6() = y '(y ) + a y)(3.1)

y' ady

where

f(y) = nn f I''-(y ' J ) dn(p) (3.2)

is the marginal density of y.

Proof: See Johnson (1984), p. 31, or Haff and Johnson

(1986a), p. 46. a

13



Example 3.1: Suppose that Y , 1=1,. . .,n, are Independent

N(p, a) random variables with (z known. Then, from Table

2.2, a (y )=o . Assume that L4, I=1,. .,n, are Independent

N(- ,T ) random variables with the v and T known. A stan-

dard calculation (see, for example, Berger (1985), pp.

127-128) shows that f(y), the marginal distribution of y, Is

the multivariate normal density with mean r = (re'" "'r)

and covariance matrix (eY
2
+T

2 )I. Substituting a (y) and f(y)

into (3.1) we obtain

B L(y -) L
6B(y) = y +0- _

( 2

= (1-r)y + rr

where r=az/(a?+T2). Note that 0 ! r 1, so that the Bayes

estimate of pt lies between r and y'. Also note In this

example that 6 depends on y only through y'. In general,

6 may depend upon all of the components of y.

Example 3.2: Suppose that Y, i1, . n, are independent

IF(ct ,(3 ) random variables with the a known. So, from
L2

Table 2.2, a (y )=yz/(c1-1). Also assume the improper prior

r
7((3) n ( f3)

L=1

for (3. Some calculation (c.f. Example 3.4 of Haff and

Johnson (1986a)) reveals

14
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F(a +r
- nL tr

f(Y) = 
L Y

so that the formal Bayes estimate is

(a +r. +1)

6 (y) Y Y(a.-1)

In Theorem 3.2, which follows, we present the Bayes

estimate of p among the class of estimates p=y-c(I-M )y

with respect to squared error loss. Such a Bayes estimate

may be referred to as a "restricted Bayes" estimate for we

restrict ourselves to looking at estimates of a given form.

In contrast, given by (3.1), may be thought of as the

"unrestricted Bayes" estimate of p.

Before stating Theorem 3.2, we provide a heuristic

derivation of the restricted Bayes estimate of the form

(1.2). Consider Figure 3.1. Pictured are the estimates y,

M y, and 6 B (given by (3.1)) of u. If we are going to

restrict our attention to those estimates of u which lie

along the line I through y and M y, then our Bayesian

perspective leads us to say the best estimate of p will be

that point on 4 nearest 6. So we desire 6B-p to be

orthogonal to 1. This orthogonality implies

0B (6B _ )ly MY) = 0

15



MW,

IN <sB

-

- M'y

Figure 3.1. Geometry of the restricted Bayes estimate.

k which, writing out p and simplifying, gives

(Y- ( _B )t (I-M )y

c c (3.3)

where It Ilz denotes the Euclidean norm, IwI w W.

.,To summarize, the choice c = c yields an estimate p of

- along the line connecting y and M y, which minimizes the

Euclidean distance of from the Bayes estimate .

Sufficient conditions under which p with c = c is the Bayes
0 A

estimator with respect to the class of estimators U are now

given in Theorem 3.2:

-6

£ 16

A .'.. .. 'LL' _.-.. . ..•." . " " "" "- -- ." - . -.. " . " "-, ' ". ". " " . . * " •



Theorem 3.2: Suppose Y is an nxl vector of independent

Pearson random variables having finite second moments. Let

X = ( . .(,) yX)( = c (I-M)y, where c is given

by (3.3). If (2.4) holds componentwise for hly)=X(y), and

(3.4) holds, then the Bayes estimator of the form

y - c(I-M )y

i6

is given with c=c in (3.3).

'4..

* Proof: As the conditions of Theorem 2.5 of Haff and Johnson

(1986a) are satisfied, we may apply this result to obtain

R. R(p,u) = R(Y,p) + E [-2atVX + ), X

where a a(y) la (y),. .,a (y))t and VX
'

' . (OX /ey, ,. P lay . Therefore

r(p) = r(Y) + L [ Jy (-2a t VX + XtX) f(y1) dy d-l W

where flyl ) denotes the integrand in (3.2). Nov,

supposing

Jy (12aVkXI + Xrk) f(yI) dy < o( (3.4)

*we may apply Fubini's Theorem (see, for example, Rudin

(1974), p. 150) to obtain

17
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WV -W V4r" '

r~p r(Y) + I (-2a'VX + X'X) f (y) dy

'4 
.1'

where f(y) is given by (3.2). Integrating by parts, we find

J a tVX f(y) dy (Y6BtXf=)d 35

y 4

the boundary terms vanishing as a consequence of the

assumption that (2.4) holds for each X.. There ore

r(p) =r(Y) + ) +?yX f(y) dy.

0 Up until now the computations have been performed for

any X which satisfies the necessary assumptions. Taking X=

cDy where D (I-K ), we find

=~p r(Y'r +J (-2cy- ) Dy + c2 DyI 2  f(y) dy. (3.6)
y

* Denoting the dependence of pon c by writing r(p)=r(p(c)),

we find

*r(p(c+w)) -r(IA(c)) wIIcc +)1DyB f(y) dy
.fy [(-)w

for ?y'=W(y). Consequently

18
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r( (c +w)) = r((c* + IDyH2 f(y) d(y) (3.7)

• .'. r(j'(c ))

so that c=c is the choice of c minimizing the Bayes risk.

In order for c=c to be the unique choice of c (up to an

equivalence class of functions whose members are equal

a.e.), we implicitly assume that Dyll f(y) > 0 a.e. with

respect to Lebesgue measure over the region of integration.

U

Theorem 2.5 of Haff and Johnson (1986a), used in the

proof of Theorem 3.2, is an easy extension of Theorem 2.1.

In the sequel, we will let p denote the estimate p

with c=c . Substitution of into p in the previous

Examples 3.1 and 3.2 is easily accomplished.

Example 3.1 (continued): In this case, we have

2 (y-r) (I-M )y

=y 2 (I-M )y
(0 +T 11(I-M% )yU

* Example 3.2 (continued): Here

/'..

y Q- (I-M )y
n

S= y + (I-M)y
(I-MN )y11

.4 19

0V



K- +V)( - ), T.,I7WRI IZ W V .W W

where Q is the diagonal matrix, Q=diag((r + 2)Cl 1

(r +2)/(c( -1)).

Note that if 6 B y - gly)(I-M,)y, then *=sB In other

'. words, if the Bayes estimate lies on the line Z (recall

*' Figure 3.1), then the restricted Bayes estimate is equal to

the Bayes estimate.

Using (3.7) of Theorem 3.2, we may state the amount of

improvement in Bayes risk of the estimate p over any other

estimate on Z. As an example, we state the improvement over

the estimate y of p in the following corollary:

Corollary 3.1: The improvement in Bayes risk of the
*

estimate u over the estimate y of p is

b y [c l z  11(I-M )y112 f(y) dy.
JA n

Proof: Let ' = -c in (3.7) so that the left-hand side of

* this equation is the Bayes risk of y. w

In Theorem 3.2, we presented the optimal Bayes estimate

* of the form p=y-c(I-M )y where c is a function, c=c(y):

cRril .l. In Theorem 3.3, we present the optimal Bayes

estimate in the event that we restrict c to being a

[ constant.

02



Theorem 3.3: Given the setting and assumptions of Theorem

3.2, the Bayes estimate of the form

p = y - C(I-M )y,

-% .%

where c is a constant, is given with

-- B" (y- 6  (I-M)y f(y) dy+'.-"~ Yy-6~ ) t I-M )y

c c C - (3.8)

E Y11(I-M )Y1' 11 (I-M yll z f(y) dy

Y tr[A(-M ) I tr[A(I-M)I f(y) dy

- y-'"__, (3.9 )

E y U(I-K )Y11 21 r 1_ 12
I 1:(1-H ,yl_ f(y) dy
Jy

where A=diag(a (Y),. .,a (Y 1) is a diagonal matrix and

tr denotes the trace operator.

Proof: Differentiating (3.6) with respect to c, we obtain

• dr(p(c) )

* r~~c) 2 J(Y-6B)Dy f (y)dy + 2c J IDyH2 f(y)dy

where D=(I-M ). Noting that this derivative is zero for c=c

as given in the integral expression of (3.8), and

--")d d r(P(c))
22d r:: dc) 2 J IsylI f(y)dy > 0,

*2

21
S..,'
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we see that (3.8) holds. That (3.9) holds Is a consequence

of rewriting the numerator integral of (3.8) by using (3.5)

. with X=(I-M )y. a
T.

Comparing (3.3) with the first expression for c in

(3.8) we see that c may be viewed as an approximation to c .

In particular, taking the expected value of the numerator of

(3.3) and dividing by the expected value of the denominator

of (3.3) we obtain c. The expectations here are with

respect to the marginal density of Y as given in (3.2).

In the sequel, we will let p denote the estimate U with

-B Bc=c. Note from (3.8) that pB=6 when 6 =Y-c(I-M )Y for some
n

constant c.

Example 3.1 (continued): Using (3.9) we find c= E triAD]/

Y2E IDyll2 , where D=(I-M ) and A=diag(a (Y),. .,a,(Y))=a I.

It follows that

a2 tr D
cz D

(0 +T ) tr D D + IIDy I!

the denominator expectation evaluated by using Theorem 4.6.1

on p. 139 of GraybIll (1976). Finally
0z

a tr D
= y- Dy

(C +T z ) tr D D + ItDIz

40

where Dr(I-M ).
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Exaaple 3.2 (continued): In this exampl c is undefined as

the expectations involved do not e-l.st. This is a result of

having placed an improper prior on 13.

As done in Corollary 3.1 for p , we may compute the

improvement in Bayes risk with

Corollary 3.2: The improvement in Bayes risk of the

"*"- estimate p over the estimate y of p is

[c] J 11(I-M )yll f(y) dy.

Proof: Substitute c for c in (3.6). *

Because the class of estimates p=y-c(I-M )y, where c=

c(y) is a function of y contains that in which c is a

constant, p will outperform p in terms of Bayes risk.

Also, by design, both p and p outperform 'he estimates Y

and M Y in terms of Bayes risk. To summarize:

r(p ) < r(p) < mn r(Y), rmMmY)

We can, of course, look at estimates of the form (1.2)

for restrictions on c=c(y) other than those already chosen.

So far we have taken a look at the two extremes of such

restrictions. The estimate p resulted in having placed

23
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no restrictions on c, and the estimate p resulted in having

restricted c to being a constant. In the theorem which

follows, we look at estimates of the form (1.2) with c(y)=

d/l1(I-M )y If, where d is a constant. The resulting Bayes

..$ estimate restricted to this class of choices of (1.2) will

be useful later in understanding estimates which have good

(ordinary) risk.

Theorem 3.4: Gien the setting and assumptions of Theorem

3.2 with II(I-M )yll- 2 (I-M )y, the Bayes estimate of the

oform

d

= - (I-M )y
U (I-M )yH

where d is a constant, is given with

Y t rAD 2YtDtDADY

.* II DYII II DY11 J
d = d - (3.10)

Y -Z

." .. II DE IIDYII

Y (Y-6 B) tDY)

* (3.11)
Y -2E IIDYII

where A=diag(a (Y I,. .. ,a (Y 11 is a diagonal matrix, D=

(I-M), and tr denotes the trace operator.

24

"-



Proof: Similiar to the proofs of Theorems 3.2 and 3.3,

and thus Is omitted. 0

Comment: Note that If we remove the expectations In (3.11)

*the estimate P becomes that of Theorem 3.2.

In the special case that Y is a vector of Independent

*N~j,,a2) random variables, we have A=a I and (3.10) becomes

t t

E D DDY

2 ~ ~ II DY11'
djtr D 2 I-(3.12)

E [ 11DYI- J

Since

X (D) :5 (DY)tD(DY)/IDYI z X mx(D),

where D=(D+Dt)/2, we may write upper and lower bounds for

4-4-(3.12). Namely,

z* z
az tr D - 2X (D)] 1 d [tr D -2X (D)). (3.13)

ma~x mt r,

By Theorem 4.2 of the next section p dominates Y with d

equal to the lower bound of (3.13).

Note that If D Is an idempotent matrix (i.e., D =D),

then (3.12) becomes

d =za ttr D -21 (3.14)

which, by Theorem 9.1.5 of Graybill (1983), p. 300, is also

* 
22a (rank D -2.(3.14')
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4. DOMINANT ESTIMATES

In this section, we digress from our main discussion

regarding estimates of the form of (1.2) to present two

dominance results. Both of these dominance results

generalize work done by Stein (1973, 1981) under the

assumption of normality. The first dominance result states

sufficient conditions on the marginal density (3.2) under

which the Bayes estimate, 6 dominates the estimate Y of pu.

. This result was proved in Haff and Johnson (1986a). The

second dominance result also looks at estimates which

I.,improve upon the estimate Y of p. It was derived

independently by Johnson (in an unpublished work), and Chou

(1988). Actually, the result of Johnson is somewhat more

general; compare Theorem 3.1 of Chou (1988) with Theorem 4.2

* below.

Before stating the first dominance result, we present

* some notation to be used throughout this section. For a

*-. vector Y=(Y,. . .,Y )t of independent Pearson random

variables, let

g(y) f(y) rj a,(y,) (4.1)

where f(Y) is given by (3.2) and the a (y) are given by

(2.2). Also let

VB  = ( e/ebe, O/abz, ... , aae
B £ 2

and

27
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B = (Y) = (b (Y~) ,b.)

where the b,= b (y )are given by 2. 3. With this notation,

we may write the Bayes estimate of pmore simply. In

B
particular, we may rewrite (3.1) as 6 =Y + VB log g(Y).

Finally, let

2 h

Theorem 4.1.: Suppose that Y is an nxl vect'- uf Independent

Pearson random variables satisfying the conditions of

*Theorem 3.1. Let X(y)=P. 1(y), . . .,Xy) = B log g~)

where g Is defined by (4.1). If (2.4) holds componentwise

f or h (Y)=Xi (y) and EY XtX < oo, then
pU

B Y 2 1/2 2
-R(6 ,p) =R(Y,M) + 4 E V [g(Y) I/ ig(Y) 1]. (4.2)

BB

Consequently, when dealing with squared error loss, 6B

- dominates Y as an estimate of p if

SV~ (g(Y) I<0. (4.3)

B

Proof: Noting that 6 =Y + VB log g(Y) =Y + X(Y), apply

*Theorem 2.5 of Haff and Johnson (1986a) to obtain

B t
R (6 , p) R R(Y, p) + E (2a VX +XX]I

(c.f. the proof of Theorem 3.2). Rewriting the expression
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N

in square brackets, we have

b exp (1/2 f X db )
R(6 BM) = R(Y,M) + 4 E

,-,'
ex I / f Xidb )

This reduces to (4.2) with X=8 log g/Ob. Finally, when

(4,11) holde, the above expectation is negative so that

B
R(6 j,) ( R(Y,p). U

We now state our second dominance result.

Theorem 4.2: Suppose Y is an nxl vector of independent

Pearson random variables having finite second moments. Let

X(y)=c(y)DB(y), where D is a specified nxn matrix of

constants and c(y):[nR-[R remains to be specified. If (2.4)

" holds componentwise for h(y)-X(y) and EYXX < 0, then

- Y - c(Y)DB(Y) dominates Y

as an estimate of p with respect to squared error loss

* for . .

(1) Symmetric D when

* c(y) = {Bt[(tr D)I - 2D]- DZB) - i

- and the largest eigenvalue of D, X (D), is less than

(tr D)/2.

29
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(11) Arbitrary D when

c(y) = (tr D) - X

IIDBB2

and x X (D) =X ((D+Dt /2) is less than (tr D)/2.

Comment: It should be noted that the dominant estimates M

4 in the above theorem are not of the form (1.2) unless B(Y)

Is a scalar multiple of Y. This only happens when Y is a

vector of normal variates. When Y Is a vector of normal

variates, note that pwith c in case (ii) is of the form pu,

the restricted Bayes estimate, given in Theorem 3.4 with

D=(I-K )

Proof: Note that c(y)=(BtNB) 1l with a symmetric N for each

of the two choices of c In the Theorem. Applying Theorem

2.5 of Haff and Johnson (1986a) and using the symmetry of N,

we find

ftAR R(Y,p) - R(p,p)

* E IIY-p112  - E H(Y - c(Y)DB(Y)) - MHz

1I=E ~4Bt D t NB + 2(tr D) - IDBII 2 ] 44

L(B NB) B NB (BtNB)'

We desire to show AR>0 for cases (I) and (iI) above.

30
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ri , Case (i): Suppose D=D t  Simple algebra gives

A R = E B ( 2[(tr D)I - 2D N - z )B.

,, (BtNB)z

Taking N = [tr D)I -2D]- DZ/ -,  we obtain

. i AR = ?-(2-r-) E IIDBIIz/(B'NB)z > 0

for 0 <yZ < 2, with the greatest improvement in AR coincid-

- Ing with y=i. This completes the proof of case (1).

Case (ii): Taking N D D D/. , , (4.4) becomes

AR"" E 4rB D D DB + ( 2(tr D) - 1

11DB1'" 2 11z DB11 2 1DB11 2

B'.ut

B tD tD tDB < max z tDz

rmax z (-D /2)z

L":' -- X ((D+Dt)/2)

" " So, assuming y>0
" Tkn N r -4y y [2(t D) obt]a

". -AR > E --- 112 + 1D 1A ID U r ) E DB(BtB II3

-, fo,, c2 it h rets ipoeen nA.cicd

,. in•ihri hscmltstepofo ae()
5'. Z

.5. 3



'%le

r r (2[(tr D) - 2X0] - ) E IIDBII

> 0

for 0 < r < 2[(tr D)-2X J. The right-hand side is maximized

with r,=(tr D)-2X . This completes the proof of case (1i). m

Under the assumption of normality, case (I) of Theorem

4.2 was established by Stein (1981; p. 1142) and case (1i)

was established by Li and Hwang (1984; proposition 1, p.

892).

One of the assumptions of Theorem 4.1 is that E X be

finite. We give sufficient conditions for this to be the

case in the following result:

Theorem 4.3: The quantity E OX E c(Y)11DB1z is finite In,'V.

case (1) if D is positive definite. It is finite in case

.. (II) if D is of full rank.

t. -

Proof: With c(y)=(BtNB)

IDB112 ]v:-• E X.' X E.

(BtNB)2

0

Case (i): Note that the matrices [(tr D)I-2D]-s and D

commute and are symmetric. Applying Theorem 10.6.8, p. 322,

of Mirsky (1972), there exists an orthogonal matrix P such

that

32
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A .'

pt (r D)I LP~ w

I,. t ~-1P
PtI(t D)I - 2DR

and

P tD zP =R

where Q and R are diagonal matrices. Hence

(PtB)tR(PtB)

HP (PB) QR(PtB)]=

(max r.)
1-2

E IIBI1-

(win q r

. In the previous expression, the r. are the diagonal entries

of R, and the q. are the diagonal entries of Q.

' Since D Is positive definite, the r are positive. Also,

X (D) < (tr D)/2 implies that the q, are positive. Since

X (D) < (tr D)/2 implies n > 3 (use the fact that the

trace of a matrix Is equal to the sum of its eigenvalues),

it suffices to show that E IIBH -z is finite for n > 3 to

complete the proof of case (I).

. Case (11): There exists a matrix P, by Theorem 10.3.4 of

Mirsky (1972), such that P D DP = R, where R is a diagonal

matrix. Consequently

E X [(tr D)-2X] 2 E NDBN -2

.. [(tr D)-2k)I E [(PtB)tRPt B)] -

* [(tr D)-2X ] 1

E NBl-i.
(min r,)
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By Theorem 12.22 of Graybill (1983), D of full rank Insures

that none of the non-negative eigenvalues r of DtD are

Szero. Again, since X < (tr D)/2 implies n > 3, it suffices

to show that E NBI - is finite for n - 3 to complete the

proof of case (iI).

So, to prove the theorem in its entirety, it remains to

show that E 1BII 2 is finite for n 3. From (1.2) of Haff

and Johnson (1986a) we obtain

E ,,BiI,2 f .. f BI -2 fy dy . dy

where fl(Yl) is
b ,,

j 1 P ( ) a ly.-' exp(p, f a,(y,)-'dy - ya.(y,)-'d,).

- Noting that Idy ./dbj = a,(y) the change of variables x

b,(y,) gives

-2 = . .f H 1-2E 1B11 = -xli j exp(pux -v' (pu))k (x) dx • dx .

Since this integral is bounded over the region Ilxii. > 6 (by

1/6), it remains to show that the above integral Is finite

over the region lxl < 6 when n - 3. Now rewrite the

integral in terms of the polar coordinates

xi = r cos e

x = r sin e cose
2 £ 2
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x =r sin 6 sin 6 cos 6
1 2 a

x = rsin e sin e ... sin e Csne c
n-2 £ 2 n-8 n-2 i-

x = r sin e, sin e. sine, sine sine_

where 0 < 19 <n for 1=1,2,. .,n, and 0 <9 2n. The
n-i

Jacobian, J, In this case Is

* n

J =rri n- (sin e.)ri

Noting that lixA z=r2 the transformed Integrand becomes

r - rr times a function bounded In the sphere r2  < 6

(the k. are bounded In the sphere If we assume a continuous

density and (2.4) holds componentwise with h(x)=1).

Consequently, E 11B RIiS finite for n 2 3. This completes

the proof. a

* We Illustrate Theorem 4.2 with two examples. For ease

of presentation, we choose D=I in each. With this selection

of D, we have c(y)=(n-2)/IIBN2 in both case (I) and case

* (1I), giving

* (n-2)
p Y- B (4.5)
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For p to dominate Y, we require 1 = X (I) < (tr I)/2 = n/2

(i.e., n > 3). As a third example, the interested reader

may wish to consult section 5 of Stein (1981). Here, In the

normal case, Stein considers the choice of the weight in a

three-term symmetric moving average.

Example 4.1 (James and Stein (1961)): Suppose Y is an nxl

22

4vector of independent N(p ,o ) random variables. From Table

2.2, B=B(Y)=Y/o2 . Hence, for n _ 3,

(n-2) 2  r (n-2)a 1
p=Y Y [ 1 -1 Y

-. I Y 1I 2 I Y II

dominates Y as an estimate of p with respect t- squared

4 error loss. Recalling that the components of B are

determined only up to a constant (see (2.3) and the

discussion which follows), we may generalize the above by

taking B=B(Y)=(Y-v)/a z , where v is any specified nxl

vector of constants. In particular, for n > 3,

(n-2)v,

S= Y - (Y-v) (4.6)

By-vi;

dominates Y. From (4.6) we see that the estimate pu corrects

the estimate Y by an amount -[(n-2)Z/IY-vII ]'(Y-v). For n>

3, the ith component of this correction term is negative if

Y v, is zero if Y=v, and is positive if Y. v. .

Consequently, we may view the estimate (4.6) componentwise

as modifying the estimate Y by moving it toward (and, in

3
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some cases, beyond) v. In practice, this estimate performs

best when v is close to p, i=1,. .,n., . .

Example 4.2 (Johnson (1984)): Suppose Y is an nxl vector of

independent random variables whose ith component has a

B(cx,?) distribution with s =c*+L known, but and (3.

unknown. From Table 2.2, we may take b (y), the ith
component of B, to be s. (In [y/(1-y)] In [v/(l-v M)),

1.1.1

where v is any constant, 0 - v < 1. With this choice of

B, (4.5) dominates Y as an estimate of P=(a,/s,,. /

for n > 3. As in the previous example, p may be thought of

as modifying the estimate Y by moving it toward v .

-.?-
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5. SUMMARY AND CONCLUSIONS

In this report, we have presented estimates of the mean

pu of a vector Y of independent Pearson random variables.

The Pearson class of random variables, which includes

several well-known variates such as the normal, was

introduced in Section 2. With the notation defined in (2.2)

and (2.3), Tables 2.1 and 2.2 summarized the salient

features of particular Pearson variates. Throughout the

report, theoretical results were illustrated by a variety of

different Pearson rardom variables.

In Section 3, we examined estimates of p of the form

ap = y- cDy (5.1)

where D=(I-M )y. These estimates may be thought of as a

compromise between a raw data estimate y of p, and a

nonparametric estimate M y of p. We deteimined the choice

of c, a real-valued function of y, yielding the smallest

Bayes risk for u. Specifically, this choice of c was found

to be

(y-6 ) tDy
c = c = (5.2)

* HIDyII

where 6 is the Bayes estimate of p. This was derived by

both geometric and analytic arguments. We also determined

p.. 39



the optimal choice of c when c was assumed to be of a

particular functional form. If c(y)=d/lDyll, for instance,

then d=d given by (3.10), or the equivalent (3.11), yields

the best performance in terms of Bayes risk.

Unfortunately, we were unable to determine c for which

j..* dominates Y in our Pearson setting except in the normal

case. We hope that the two dominance results for estimates

6 not of the form (5.1) (recall Theorem 4.1 and Theorem 4.2)

will aid in finding such a c. In particular, the sufficient

Bcondition (4.3) given for 6 to dominate Y may help

B* establish simple conditions on 6 in (5.2) so that p

dominates Y. Also, perhaps, c c might be approximated to

yield a dominant estimate p.

04
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Appendix A

ERRATA FOR LI AND HWANG (1984)

In this appendix, we list some minor errors in Li and

Hwang (1984). The substance of their results are unaffected

by these corrections.

Under their Theorem 1 (all references to theorems and

equations in this appendix refer to Li and Hwang (1984)),

*the right-hand side of the equality (2.9) should read

(1 + o (1))n-1lM y - f 1lz + o (En- 1 l - f 11z ) .
p n pn

On the second line following (2.13)

(1+x) - l < 1-x for x > 0

should be replaced by

(1+x) > 1-x for x > 0.

In the line following (2.14), replace

+ 2(2n - + 3(n-tr M ) 1 ')n- 1 1A yl

with

+ 2(2n' + 3(n-tr M 2) /2)n-t1 A yl
nY1

The line below (2.20), we read "Finally (2.17) follows

from (2.16),(2.6) and (2.20)." We also need the fourth

moment of the c to exist here.

A-i
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On the right-hand side of the equality (2.21), replace

o (n-1tr M7 + n-11A f 11z  + n-I 1M y - f II)z
p n n n n n

with

o (n- tr M2 + n-IlA f II + n I y-f I).
p n 0 n

Four lines below (2.25), the inequality

- (n tr M )z + mn-Ztr M2

is not necessarily true. It suffices to have

(n- 1 tr M ) z + 2mn-Ztr Mz
n n

instead.

Two lines above (2.26), replace

°(En-1 lIy - f 1 Z)° (n-1 1 y - f ll)

with

.1 o (En- 1 iMy - f llz)=r (n-lMy - f II)

On the second llse from the end of the proof of Theorem

- 1, on page 891, replace

= 2(m + 2)X(M2 )(tr M 2 )- (EIlMny - f 1)2

* with

, 2(m + 2)XM 2 )(tr M)-L(En-IllMy - f 112)2.

0
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Appendix B

DECISION THEORY TERMINOLOGY

In this appendix, we review some standard terminology

used in decision theory.

Let Y - (YI, .,Y,)t be a vector of Independent

random variables with the ith coordinate having a density of

f (y p). we understand f (yI lpt to denote a family o f

--. densities indexed by the parameter p Also, let EY =

*(EY, . EY t p To estimate pu by = Ok(Y)

(0 (Y, .. .1(Y)) we will use the squared error loss

function L where

L40 ) 0P, 0P

(Y

* -The expected loss or risk, R(0t,p), incurred In

estimating pby # is then given by

SX

* - J L(40,p)f(yjp) dy

where fly j) flf(YIl) and dy fldy.
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I

The superscripts of the expectation symbol E denote the

random variables with respect to which we are taking the

expectation. The subscripts of E denote fixed parameters.

Such superscripts and subscripts are suppressed when these

are clear from the context.

We will say that 'p(Y) dominates 0 (Y) in estimating p

with respect to squared error loss provided

4 R('p p) <R(O Pp)
5-

for all p, with strict inequality for some u. The phrase

with respect to squared error loss, since it is understood,

*will generally be suppressed (we use parentheses to enclose

such phrases in what follows) Loss functions other than

squared error loss, of course, could be used.

h~iIn the event there does not exist an estimator 'p O(Y)

which dominates a particular estimator = (Y), we call
5%

an admissible estimator. An estimator which is not

admissible is inadmissible.

One basis of comparison between two estimators '

'p (Y) and 0, = (Y) can be made by examining how large

* their risks may become as we vary p. In particular, we may

prefer ' to if

S. sup R(0 p,) < sup R(', )

and call an estimator minlmax If it minimizes this supremum.

That is, ' is minimax if

* sup R(', p) = inf sup R(',p).

B-2



If we have prior information about p in the form of a

probability distribution n(p) for M, then estimators may be

* compared on the basis of their Bayes risk. The Bayes risk,

,. r = r(O) : r(O,n), of an estimator is given by a weighted

average of the risk. In particular

r(0) - r(0,-) R(O,P) drr(p).

Note that the case of the letter r distinguishes whether we

are dealing with the (ordinary) risk or Bayes risk. We say

[0 = (Y) is a Bayes estimate of p (with respect to the

prior distribution n) if

r(,) = min r(O,-). (B.1)

In the above discussion on Bayes estimates, we assume

* - that n(p) is a probability distribution. That is, we assume

X dn(p) = 1. Yet, even when X dn(p) = c we may still find

a solution to (B.1). The prior in this case is called an

Improper prior and the resulting estimate in called a formal

Bayes estimate.

We will, at times, restrict our attention to a

particular class, 1, of estimates, , over which we will

' take the above minimum. In this event, @ is a Bayes

estimate with respect to the class 1 (and prior distribution

n). Such a Bayes estimate may be spoken of as a restricted

* Bayes estimate.

B-3
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Appendix C

A ONE-SIDED CHEBYSHEV INEQUALITY
WHEN THE FIRST FOUR MOMENTS ARE KNOWN

Below, we recall a Theorem of Bhattacharyya (1987)

., which gives a bound for the tail probability of a random

variable whose first four moments are known.

Theorem C.1 (Bhattacharyya (1987)): Let X be a random

% variable with mean p, and let az, ' , be the second,

third, and fourth central moments, respectively. Also let

34
,'P /o and k=p la. For every non-negative t satisfying

3 4..

t -st->0

r. k-s2-i
,P( X-P -> t) < 2(C.l1

( (k-s 2 1)(1+t2 ) + (t 2 -st-ll1

For a Pearson random variable with parameters e, 1"

.3 and (3 we have

p = EX = (e+3 )/(1-20

a- = E(X-u)2 = Q(m)/(1-33 )

E(X-u) = 2Q'(u)Q(P)/1(1-3/ )(1-4t3 )]

P - E(X-P)' = 3Q(u)[2Q'(pu)Z+(l-4{3z)Q(u) 1/[ (1-3(3 z ) (1-42 ) (1-5(3)]

.- where Q(u) =0 + (?IU + (p2 , provided these moments exist

and Theorem 2.1 holds for h(x)=x n=0,1,2,3.

c-1
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z
Example C.l: If X is N(4,o ), then we find, by using Table

2.2 and the above moment relations that p9= and p.':3a'.

Hence, inequality (C.1) holds for t > 1, with s=O and k=3.

Example C.2: If X is F(c, 3), then we find, by using Table

2.2 and the above moment relations, that p=ot//, a =*/ P,

P3=2cx/i? and P =3o4(ox+2)/P 4. Consequently, the inequality

(C.1) holds for t > [1 + ( +i) 1/c* / 2  with s=2/cg*' and

k=3+6/c.

'C-

I
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Appendix D

BOUNDS FOR THE VARIANCE OF A
FUNCTION OF A PEARSON RANDOM VARIABLE

Klaassen (1985) presents upper and lower bounds for the

variance of a function, G, of an arbitrary random variable.

For continuous random variables, the bounds involve

derivatives of G, while for discrete random variables, the

bounds involve differences of G. Klaassen's result

generalizes the result established by Chernoff (1981) in the

-. case where the random variable is normally distributed.

In this appendix, we apply the work .f Klaassen

to the Pearson class of densities.

' Theorem D.1: Let X be a Pearson random variable on (r,s)

with finite variance 2 satisfying (2.4) with h(x)=l. Then

CE a(X)g(X)] /o Var G(X) -< E [a(X)g(X)2 1  (D.1)

where g(X)=G'(X).

Proof: Apply Theorems 2.1 and 3.1 of Klaassen (1985), with

".. P=Lebesgue measure, x(x,y)= (b' (y) - 1X,bj (y), where b=(xq°J

• EX=(e+(3)/(1-2(3), h(x)(1-232), and H(x)=(1-2( 3)x-(e+p,).

.. .,

D-1
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Example D.1: If X is normal with mean - and variance

then a(x)=az (see Table 2.2), and (D.1) becomes

E [g(X)] < Var G(X) < oz E [g(X) ].

Example D.2: If X is a beta variate, B(ot,(3), then

cq3/[(a+t3) (<x++1)] (see Table 2.1) and a(x)=x(1-x)/(*+3)

4(see Table 2.2) so that (D.1) becomes

(cxl(3+i) 1
E[X(1-X)g(X)] Var G(X) < E [X(1-X)g(X)].

C943

I

We now apply Klaassen's result to discrete Pearson

I- random variables. These random variables are defined on p.

83 of Johnson (1984). Some examples appear in Table D.1.

Theorem D.2: Let X be a discrete Pearson random variable on

{N,. . ,NI} with finite variance a2. Then

-E d(X)g(X)] /o' - Var G(X) < E [d(X)g(X)z]

where
d(x) z a(x) - (x-p),

Uz
* a(x) ( + (3 x + ( xZ)/(l-20),

, EX (e+(3-l)/(l-23),

* g(x) G(x+l) - G(x)

provided

*. lim a(x)f(x) - 0,
x -+N

for 1=0 when N -o and for i=1 when N =o.0 N O

"', D-2
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Proof: Apply Theorems 2.1 and 3.1 of Klaassen (1985) with p

=counting measure, X(xy) -- 1 (y) - 1 (y) -

[[L)],x)

(1-]) 1 (y) where [i] denotes the integer part of -

and ,=EX=(6+(- 1)/(1-2f3), h(x)=(1-2(3), and k(x):(1-23 )x-
22

~(O+(?-1). •
I

Table D.1. Some discrete Pearson random variables.

Name Probability Distribution (e,o 10 1 10 )

-0 2

e
Poisson • y=0••2, (X, ,O)

Binomial n n pg'q -', y=O, . a,, (p(n+1),0,q,0)

where q=(1-p)

Negative [ r+y-1 J ..-. .
Binomial Y pq , Y= - , - -1, 0, 1, . ((r-1)p/g,O,1/q,O)

Boawhere q-(l-p)

k
Discrete t CK [l [(y+a+i) + b'] , y= .,-1,0,1,.

(Ord (1968)) =o

0 < a < I, 0 < b <

k a non-negative integer

[ ~ (1-k-2a)/2, [ (a+k)z+bz]/2(k+l), [2(a+k)+l]/2(k+l), 1/2(k+1) )

D- 3
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